
ON COMBINING LAPLACIAN AND OPTIMIZATION-BASEDMESH SMOOTHING TECHNIQUESLori A. FreitagMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439freitag@mcs.anl.govABSTRACTLocal mesh smoothing algorithms have been shown to bee�ective in repairing distorted elements in automatically gener-ated meshes. The simplest such algorithm is Laplacian smooth-ing, which moves grid points to the geometric center of incidentvertices. Unfortunately, this method operates heuristically andcan create invalid meshes or elements of worse quality than thosecontained in the original mesh. In contrast, optimization-basedmethods are designed to maximize some measure of mesh qual-ity and are very e�ective at eliminating extremal angles in themesh. These improvements come at a higher computationalcost, however. In this article we propose three smoothing tech-niques that combine a smart variant of Laplacian smoothingwith an optimization-based approach. Several numerical ex-periments are performed that compare the mesh quality andcomputational cost for each of the methods in two and three di-mensions. We �nd that the combined approaches are very coste�ective and yield high-quality meshes.INTRODUCTIONThe �nite element and �nite volume solution methods haveproven to be e�ective tools in the numerical solution of many sci-enti�c and engineering applications. Both techniques require aspatial decomposition of the computational domain into a unionof simple geometric elements such as triangles or quadrilateralsin two dimensions and tetrahedra or hexahedra in three dimen-sions. If the geometry is complex, automatic mesh generationtools are used to facilitate this decomposition (Lo, 1985, Shep-hard and Georges, 1991, Weatherill, 1994). A problem withthese meshes is that the shape of the elements in the mesh canvary signi�cantly. For �nite element techniques using simplicialmeshes, poorly shaped or distorted elements can result in nu-merical di�culties during the solution process, particularly asthe elements approach the limits of 0o or 180o (Babuska and

Aziz, 1976, Fried, 1972). This problem is more severe in threedimensions than in two dimensions because tetrahedral meshestend to have a larger proportion of severely distored elementsthan do triangular meshes.One approach used to repair poor quality meshes is to ad-just the grid point locations without changing the mesh topol-ogy. This approach is called mesh smoothing, and several re-search groups have proposed di�erent algorithms to perform gridpoint adjustment, e.g. Field (1988), Amezua et al. (1995), andCanann et al. (1993). In general, most mesh smoothing algo-rithms are local techniques and adjust the geometric positionof each vertex individually to obtain improvement in a neigh-borhood around that vertex. Some number of sweeps over theadjustable vertices are performed to achieve overall improve-ment in the mesh. Because the mesh may contain millions ofgrid points, it is critical that each individual adjustment be com-putationally inexpensive.Perhaps the most commonly used local smoothing tech-nique is Laplacian smoothing (Lo, 1985, Field, 1988). In thismethod each grid point is moved to the geometric center ofthe polygon determined by the incident vertices. This methodis computationally inexpensive, but operates heuristically anddoes not guarantee improvement in the element quality. In fact,it is possible to produce an invalid mesh containing elementsthat are inverted or have negative area. One common variantof Laplacian smoothing allows the grid point movement to takeplace only if the mesh is improved according to some qualitymeasure. This smart Laplacian smoother guarantees an im-proved mesh, but the new point location is not optimal.One class of algorithms that avoids the creation of in-valid elements and �nds an optimal new location for the meshvertices uses optimization techniques (Amenta et al., 1997,Parthasarathy and Kodiyalam, 1991, Shephard and Georges,1991). These techniques o�er the advantage of guaranteed meshimprovement and validity. However, this guarantee comes at a



much higher computational cost than Laplacian smoothing.In Freitag et al. (1995) we proposed a local optimization-based mesh smoothing technique for two-dimensional triangu-lar meshes that can serve as the core of an e�cient parallelalgorithm with a provably fast runtime bound. In Freitag andOllivier-Gooch (1996) we extended this algorithm to three di-mensions and followed a two-pronged approach for improvingtetrahedral meshes. We showed that face swapping followedby optimization-based smoothing signi�cantly improved dihe-dral angles near 0 and 180 degrees for a number of test cases. Incontrast, face swapping followed by smart Laplacian smootherswere unable to eliminate extremal angles in the mesh. Neithertechnique was able to eliminate poor mesh elements that wereadjacent to each other or to geometry boundaries.In two dimensions the optimization-based smoother was ap-proximately �ve times more computationally expensive than thesmart Laplacian smoother and ten times more computationallyexpensive in three dimensions. In this article, we propose severaltechniques that combine the low cost Laplacian smoothing withthe optimization-based approach used only for the poorest qual-ity elements. Numerical experiments are performed for severaltest meshes generated using commonly available techniques suchas Delaunay point insertion, quadtree mesh generation, and awavefront algorithms.The remainder of the article is organized as follows. In thenext section we brie
y review the optimization-based techniqueused in our experiments and formulate the proposed combinedapproaches. We then perform a number of numerical experi-ments on meshes generated from random point sets in both twoand three dimensions. These meshes contain severely distortedelements and give a good indication of smoothing algorithm ef-fectiveness. Following this analysis the suite of test cases is ex-panded to include several application meshes. Finally, we sum-marize the performance obtained with the combined approachesand o�er concluding remarks.THE COMBINED SMOOTHING APPROACHLocal mesh smoothing techniques are formulated in termsof the grid point to be adjusted, the free vertex, v, and thatgrid point's adjacent vertices, V . The location of the free vertexis changed according to some rule or heuristic procedure basedon information available at the adjacent grid points. Suppose xis the position of the free vertex; then the general form of thesmoothing algorithms is given byxnew = Smooth(x, V , jV j, conn(V )),where xnew is the proposed new position of v, jV j is the numberof adjacent vertices, and conn(V ) is the adjacent vertex connec-tivity information. Ideally, the new location of the free vertexwill improve the mesh according to some measure of mesh qual-ity such as dihedral angle or element aspect ratio.To evaluate the mesh quality for the mesh elements, letfi(x), i = 1; : : : ; n, be the values of mesh quality a�ected by achange in x. For example, if we use the dihedral angles as amesh quality measure in a three-dimensional mesh, each tetra-hedron would have six function values, one for each edge of the

tetrahedron. Thus, the total number of function values a�ectedby a change in x would be the number of tetrahedra containingthe vertex v multiplied by six. Let the set of function valuesthat obtain a minimum value at x, the active set, be denotedby A(x).The action of the function Smooth is determined by theparticular algorithm chosen, and in this section �ve algorithmsare described.\Smart" Laplacian SmoothingThe �rst algorithm is a variant of Laplacian smoothing thatrelocates the mesh grid point to the geometric center of the ad-jacent grid points only if the quality of the local mesh is im-proved according to some mesh quality measure. In that case,the smoothing operator given above has the following actionCompute f(x0) and A(x0)Compute x̂ =Pi2V xVi=jV jCompute f(x̂) and A(x̂)If A(x̂) > A(x0) set xnew = x̂where xVi is the position of the ith adjacent vertex. Comput-ing x̂ is quite inexpensive, and the total time required by thismethod is dominated by the two function evaluations, f(x0) andf(x̂).Optimization-based SmoothingOptimization techniques use function and gradient evalua-tions to �nd the minimum (or maximum) value that the func-tion obtains in the solution space. The goal of the optimizationapproach is to determine the position x� that maximizes thecomposite function �(x) = min1�i�n fi(x): (1)For most quality measures of interest, the functions fi(x) aredi�erentiable. However, the composite function �(x) has dis-continuous derivatives wherever a change occurs in the activeset. We solve this nonsmooth optimization problem using ananalogue of the steepest descent method for smooth functions.The search direction s at each step is computed by solvinga quadratic programming problem that gives the direction ofsteepest descent from all possible convex linear combinations ofthe gradients in the active set at x. The line search subproblemalong s is solved by predicting the points at which the set ofactive functions will change based on the �rst-order Taylor se-ries approximations of the fi(x). The distance from the currentposition to the point at which the active sets are predicted tochange gives the initial step length �. Standard step acceptanceand termination criteria are used to ensure a robust implemen-tation. The action of the smoothing operator for optimization-based smoothing is given in Figure 1.It has be shown that this technique is equivalent to gener-alized linear programming techniques by Amenta et al. (1997),and thus the convex level set criterion can be used to determine



i = 0Compute f(x0) and A(x0)While ((xi 6= x�) and (� > MIN STEP)and (i < MAX ITER) and(jA(xi)� A(xi�1)j > MIN IMP))Compute the gradients giCompute search direction siCompute �While (STEP NOT ACCEPTED)and (� > MIN STEP)Compute xi+1 = xi + �siCompute f(xi+1) and A(xi+1)Test for step acceptance� = �=2Endwhilei = i+ 1EndwhileFigure 1: The optimization-based smoothing algorithmwhether there is a unique solution x�. Amenta et. al. (1997)describe the level sets for several mesh quality criteria. Theyfound that many such level sets meet the convexity requirementfor unique solutions. We note that similar local optimization-based smoothing methods have been proposed for a variety ofoptimization procedures and mesh quality measures, e.g. Bankand Smith, Shephard and Georges (1991).Experimental results demonstrating the e�ectiveness of theoptimization-based method compared with Laplacian smooth-ing for two- and three-dimensional simplicial meshes are givenin Freitag, et al. (1995) and Freitag and Ollivier-Gooch (1996).The optimization-based method was extremely e�ective at elim-inating extremal angles from the mesh in both two and threedimensions, whereas the Laplacian smoother was often unableto signi�cantly improve the most severely distorted elements.These results also showed that more than three sweeps of themesh o�er minimal improvements.The Combined ApproachesPreliminary experiments in Freitag and Ollivier-Gooch(1996) showed that the most e�ective and e�cient smooth-ing approach combined the smart Laplacian smoother withthe optimization-based algorithm. In this approach, the smartLaplacian smoother was used to adjust every grid point andwas followed by the optimization-based algorithm in only thepoorest-quality elements. This technique was only twice as com-putationally expensive as the smart Laplacian smoother usedalone and achieved meshes comparable in quality to those ob-tained when the optimization-based smoother was used for allgrid points. In this article we will more fully investigate thecombined approach initially presented in Freitag and Ollivier-Gooch (1996), along with two related approaches.

Combined Approach 1. In this technique, the active valueof the initial mesh is compared with a user-de�ned thresholdvalue. If the threshold value is exceeded, the smart variantof Laplacian smoothing is used; otherwise, optimization-basedsmoothing is performed.Combined Approach 2. In this technique, smart Lapla-cian smoothing is used as the �rst step for every grid point.The active value in the local mesh after this step is comparedwith a user-de�ned threshold value. If the active value ex-ceeds the threshold value, the algorithm terminates; otherwise,optimization-based smoothing is performed.Combined Approach 3. In this technique, the active valueof the initial mesh is compared with a user-de�ned thresholdvalue. If the threshold value is exceeded, no smoothing is per-formed; otherwise, Laplacian smoothing is used. If the activevalue still does not exceed the threshold value following Lapla-cian smoothing, the optimization-based smoother is used.NUMERICAL EXPERIMENTSWe now compare the e�ectiveness and computational costof the Laplacian smoother, the optimization-based smoother,and the three combined approaches given in the preceding sec-tion. For each of the combined approaches, four di�erent thresh-old values, �T = 5o; 10o; 15o; and 30o, were investigated. Inall cases, the mesh quality function used to determine the activevalue is the minimum sine of the angles in the incident elements.Because the sine function is small near the angles of 0o and 180o,this mesh quality measure has the e�ect of eliminating bothlarge and small angles in the mesh. E�ectiveness of the smooth-ing technique is measured by examining the global minimumand maximum angles/dihedral angles in two/three dimensions.In each case we also report the number of cells smoothed withthe Laplacian technique and the number of cells smoothed withthe optimization-based technique. Computational cost is mea-sured by the average time required to smooth each vertex in themesh. To analyze the overall mesh improvement, we examine forselected cases. All computational experiments were performedon a 110 MHz SPARC 5 workstation.Meshes Generated from Random Point SetsThe �rst suite of tests was performed on meshes generatedfrom random point sets. For the two-dimensional test case, weconsidered a Delaunay triangulation of 500 random points in theunit square. The current version of the smoothing code adjustsonly interior vertices; and to eliminate the problem of poor as-pect ratio triangles on the boundary, we placed 20 equally spacedgrid points on each side of the square. This mesh, rand2D, wasgenerated by using the Carnegie Mellon University Triangle code(Shewchuk, 1996) and has a total of 580 points and 1078 trian-gles.In three dimensions, we use the unit cube geometry with



Figure 2: The original two-dimensional Delaunay mesh generated from 500 random points and the same mesh after three passes ofLaplacian smoothing, optimization-based smoothing, and the second combined approach with a threshold of 30opoints incrementally inserted at random in the interior. Eachpoint is connected to the vertices of the tetrahedron containingit, with points near an existing face or edge in the tetrahedral-ization projected onto that face or edge. This mesh has 1086points approximately equally distributed through the domainand 5104 tetrahedra. This test case was also considered in Fre-itag and Ollivier-Gooch (1996), which focused on the evaluationof swapping and smoothing mesh improvement techniques usedseparately and together. It was found that swapping the facesof the original mesh before applying the smoothing technique iscritical in obtaining good-quality meshes. Therefore, we swapthe faces of the initial mesh as follows using an in-sphere crite-rion followed by a maxmin dihedral angle criterion and use thismesh as the initial mesh, rand3D, for the numerical experimentsin this section.Figure 2 shows the original two-dimensional mesh, rand2D,and the same mesh after three passes of Laplacian smoothing,optimization-based smoothing, and the second combined ap-proach with a 30o threshold value. Each smoothing algorithmconsiderably improves the mesh, and in Table 1 we summarizeTable 1: Mesh quality improvement for rand2DMin. Max. Num. Num. TimeCase �T Angle Angle Lap. Opt. (ms)Orig | :714o 175:92o | | |Lap | 10:50o 156:2o 1500 0 .440Opt | 18:20o 143:5o 1500 0 2.08C1 5o 10:37o 156:3o 1457 43 .503C1 10o 12:24o 149:1o 1337 163 .678C1 15o 15:95o 148:0o 1107 393 .984C1 30o 18:20o 143:5o 258 1242 1.97C2 5o 10:47o 156:3o 1500 5 .458C2 10o 11:52o 154:8o 1500 23 .487C2 15o 16:28o 145:8o 1500 54 .542C2 30o 18:55o 140:5o 1500 593 1.17C3 5o 5:26o 166:0o 23 5 .264C3 10o 10:01o 155:1o 65 24 .304C3 15o 15:00o 148:8o 132 58 .366C3 30o 18:55o 140:5o 749 609 1.10

the smoothing results.In each case the initial angle of 0:714o is improved to at least10o and in some cases is increased to more than 18o after threepasses of mesh smoothing. For this mesh, the optimzation-basedtechnique is approximately �ve times more expensive than thesmart Laplacian smoother. For each of the combined approachesincreasing the threshold value corresponds to an increase in boththe global minimum angle and the compuational cost. We notethat obtaining a minimum angle of 18o with the �rst combinedapproach costs nearly as much as using optimization alone, be-cause so many elements have minimum angles less than 30o.The second and third approaches are much more cost e�ectivebecause using Laplacian smoothing eliminated the need to dooptimization for more than half of the grid points compared tothe �rst combined approach.The results for rand3D are given in Table 2. In this case theLaplacian smoother used alone improved the minimum angleonly to 0:471o, whereas the optimization-based smoother andcombined approaches increase the minimum angle to betweenTable 2: Mesh quality improvement for rand3DMin. Max. Num. Num. TimeCase �T Dihed. Dihed. Lap. Opt. (ms)Orig | 10�6o 180:0o | | |Lap | :471o 179:21o 2808 0 2.03Opt | 7:88o 169:4o 0 2808 21.3C1 5o 5:06o 172:6o 2722 86 2.69C1 10o 8:21o 169:6o 2395 413 5.08C1 15o 9:83o 168:0o 1883 925 9.69C1 30o 7:88o 169:4o 47 2761 21.7C2 5o 5:07o 172:6o 2808 38 2.38C2 10o 8:35o 169:3o 2808 191 3.67C2 15o 8:61o 167:6o 2808 531 6.38C2 30o 8:79o 168:3o 2808 2704 20.7C3 5o 5:02o 174:7o 55 39 1.39C3 10o 7:63o 169:5o 296 222 3.00C3 15o 8:73o 169:3o 717 579 5.91C3 30o 8:79o 168:3o 2757 2704 20.6
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Figure 3: The distribution of angles in the original mesh and the same mesh after three passes of the indicated smoothing techniques5o and 9:8o In three dimensions, this increase in quality us-ing the optimization-based smoother alone is obtained at ap-proximately ten times the cost of the smart Laplacian smootherused alone. For each of the combined approaches, a minimumangle of approximately 8o is obtained for a threshold value of10o. Again, the second and third combined approaches are morecost e�ective than the �rst; only one tenth the grid points re-quire optimization-based smoothing, and in these cases the costis roughly 3 to 3.5 ms per smoothing call (compared with 2.2ms for Laplacian smoothing and 20.5 ms for optimization-basedsmoothing).Complete angle distributions for the random meshes areshown in Figure 3. In each graph we show the percentage ofangles in each six degree bin for the original mesh and the samemesh after three passes of the Laplacian and optimization-basedsmoothing techniques. In addition we include the angle distri-butions for each combined technique at the threshold value thatcorresponds to roughly two times the cost of Laplacian smooth-ing. It is interesting to note that although the optimization-based smoothing techniques more e�ectively eliminate extremalangles in the meshes in both two and three dimensions, the aver-aging technique used in Laplacian smoothing produces more el-ements that tend toward equilateral (note the peaks near 60o in2D and 72o in 3D). As expected, the angle distributions for the�rst and second combined approaches fall between the Lapla-cian and optimization-based smoothing techniques. The thirdcombined approach e�ectively eliminates the extremal angles,but the overall distribution is not signi�cantly improved becauseonly selected grid points are adjusted. In fact, in two dimensionsthere is a peak at the threshold value of 30o for the C3 curve.Application MeshesWe now analyze the performance of each of the smoothingalgorithms for various two- and three-dimensional applicationmeshes. We compare cost and e�ectiveness of the the smartLaplacian smoother, the optimization-based smoother and the

combined approaches. For each combined technique we includethe case with the smallest threshold value that gives results com-parable to the optimization-based approach.The application meshes are generated for six di�erent ge-ometries meshed with di�erent techniques. For two dimensions,we use the following test cases:1. a four element airfoil meshed with the Carnegie MellonTriangle Delaunay mesh generation code (Shewchuk, 1996)2. a single element airfoil meshed with the QMG quadtreemesh generator (Vavasis and Mitchell, 1996),3. a branched channel geometry meshed with an anisotropicwavefront algorithm used by Tim Barth at NASA Ames(Barth, 1994). For this case we smooth only the sub-set of grid points that are not incident to anisotropic el-ements. In this way, transition regions between anisotropicand isotropic elements can be signi�cantly improved with-out a�ecting boundary layer elements.For three dimensions, we have1. a tire incinerator meshed with the point insertionGRUMMP software Ollivier-Gooch (1996),2. a polygonal approximation to a teapot provided with theGEOMPACK Delaunay mesh generation software (Joe,1991), and3. and tube geometry provided with the QMG octree meshgeneration software (Vavasis and Mitchell, 1996).A summary of the initial mesh sizes and qualities is given forthe application meshes in Table 3.



Table 3: Application meshesNum. Num. Min. Max.Geom/Mesher Dim. Vert. Elem. Angle AngleAir-4/Triangle 2 5506 10068 15:04o 144:9oChan./Barth 2 8547 16414 :983o 173:7oAir-1/QMG 2 2644 4790 3:81o 162:2oIncin./Grummp 3 2570 11098 10�6o 180:0oPot/G-Pack 3 2660 10765 15:84o 139:1oTube/QMG 3 2846 11540 1:71o 177:7oThe smoothing results are given in Table 4. In each case theoptimization-based method yields a greater increase in the mim-imum angle than the Laplacian smoother does. As was the casewith the random meshes, the corresponding increase in compu-tational cost is approximately a factor of four in two dimensionsand a factor of ten in three dimensions. For all cases, the com-bined approaches are able to obtain the same minimum angleas optimization-based smoothing used alone at a fraction of thecost. The threshold value required for the QMG, GRUMMP,and Barth meshes was less than 30o for all of the combined ap-proaches. The Triangle and GEOMPACK initial meshes had aminimum angle that was greater than 15o and therefore requireda 30o threshold to match the optimization-based improvements.In general, the cost of the combined approaches in decreasingorder is C1, C2, and C3, which corresponds to a decreasing to-tal number of function evaluations. In fact, for two-dimensionalmeshes, the third combined approach required less time than theLaplacian smoother because so few grid points required smooth-ing. We note that the cost of the third approach can be furtherreduced by evaluating only grid points that changed location orare adjacent to grid points that changed location in the previoussmoothing pass.CONCLUDING REMARKSIn this article we presented three smoothing techniques thatcombined the low computational cost of the Laplacian smooth-ing technique with the e�ectiveness of an optimization-basedapproach. Numerical experiments in both two and three di-mensions show that each approach is as e�ective at eliminatingextremal angles in the mesh as optimization-based smoothingused alone at a fraction of the cost. In addition, the �rst andsecond combined approaches created more equilateral elementsthan optimization-based smoothing in both two and three di-mensions. We conclude that these techniques may generatehigher-quality meshes than either Laplacian or optimization-based smoothing used alone. In contrast, the C3 approach hada relatively poor angle distribution because only a small num-ber of the grid points were relocated. The computational costsof the C3 technique were correspondingly small, and we foundthat this approach was the least expensive combined approach.In fact, it was often computationally cheaper than Laplaciansmoothing used on every grid point.Several enhancements are being incorporated into the meshimprovement software to increase its e�ectiveness and e�ciency.

Table 4: Mesh quality improvement for the applicationmeshes2DMin. Max. Num. Num. TimeGeom Tech. Angle Angle Lap. Opt. (ms)Orig 15:04o 144:9o | | |Lap 15:06o 138:3o 13668 | .460Air-4 Opt 19:07o 132:7o | 13668 1.68C1/30 19:06o 132:7o 12403 1265 .650C2/30 19:10o 132:7o 13668 1098 .615C3/30 19:11o 132:7o 1265 1105 .434Orig :983o 173:7o | | |Lap 2:21o 169:9o 15090 | .474Chan Opt 2:94o 169:7o | 15090 1.83C1/5 2:98o 172:5o 14988 102 .476C2/5 2:98o 172:1o 15090 83 .476C3/5 2:95o 170:5o 96 82 .274Orig 3:81o 162:2o | | |Lap 8:10o 155:1o 6438 | .463Air-1 Opt 12:37o 139:1o | 6438 1.60C1/15 12:46o 144:1o 6245 193 .535C2/15 12:66o 144:0o 6438 125 .518C3/15 12:18o 149:6o 183 128 .3213DMin. Max. Num. Num. TimeGeom Tech Angle Angle Lap. Opt. (ms)Orig 10�6o 180:0o | | |Lap :657o 178:8o 3966 | 2.36Incin Opt 9:56o 163:6o | 3966 22.5C1/10 9:36o 167:2o 3852 114 3.27C2/10 9:11o 168:4o 3966 49 2.83C3/15 9:75o 165:1o 288 164 2.70Orig 15:84o 139:1o | | |Lap 16:76o 138:2o 3375 | 2.60Pot Opt 19:64o 148:5o | 3375 19.8C1/30 19:64o 154:4o 3168 207 4.04C2/30 19:67o 143:3o 3375 159 3.73C3/30 19:66o 143:1o 212 171 2.69Orig 1:71o 177:7o | | |Lap 1:17o 177:7o 3654 | 2.26Tube Opt 4:77o 174:9o | 3654 21.4C1/10 4:36o 175:5o 3080 574 6.24C2/15 4:64o 175:3o 3654 1225 9.93C3/15 4:37o 175:5o 1382 1234 9.39The current software uses mesh smoothing to improve thequality of the interior mesh once the surface mesh has been gen-erated. We plan to add surface mesh-smoothing capabilities tothe optimization-based algorithm by incorporating additionalconstraints to bind the free vertex to the boundary surfaces.We are also interested in examining optimization-based smooth-ing with other measures including aspect ratio and solid angles
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